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ABSTRACT

Software analysis of binary code is an important and challenging area of ongoing research.

Due to the significant complexity, tasks such as accurate function identification and control flow

graph recovery remain open problems in both industry and academia. The ability to reliably

analyze binary code is quite valuable to several industries, ranging from cybersecurity to software

verification. While several tools exist to disassemble and model control flow in binary programs,

none have a reliable and robust way of modeling dataflow. To address this gap, this thesis will

present a new technique to trace register dataflow across program slices on the x86 architecture

with a tool called ”RegSym”.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Overview

In this section, several concepts of binary analysis and x86 architecture specifics will be described

in order to provide the reader with a healthy amount of background information on the topic.

1.1.1 Applications of Dataflow Analysis

1.1.1.1 Reverse Engineering & Software Verification

Reverse engineering binary code has several applications such as verifying the correctness of a

region of code and determining what a program does when executed. While several solutions exist

to model key elements of reverse engineering, such as CFG extraction, having the ability to view

dataflow information would significantly help an analyst when examining a program. For example,

given a binary program containing a proprietary encryption routine, an analyst wants to crack or

verify the security of the algorithm. By tracing the dataflow of the plaintext and key, one can

obtain a better understanding of how the routine operates.

1.1.1.2 Cybersecurity

Determining whether software is vulnerable to exploitation is not an easy task, however there

are several techniques that can be used to help mitigate and detect software vulnerabilities. One

example is taint analysis, which is the process of ”tainting” inputs to a program and all the

subsequent regions in order to highlight the areas of the program that can be influenced by external

inputs [28]. This allows a developer to determine which regions of the program can potentially be

controlled by an attacker and guard against this appropriately. Typically this is done via ”dynamic

taint analysis” which involves running binary code that has been instrumented in order to record

the tainted regions of memory during runtime. In order to do this from a static analysis standpoint,
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the ability to model dataflow is essential so that inputs can be traced throughout the program, and

the taint propagated.

1.1.2 x86 Architecture

The majority of personal computers and servers today run on the x86 architecture which was

designed by Intel. While other architectures are popular, such as ARM in the mobile environment,

x86 was chosen for this research due to its complexity and prevalence in the computer market. The

details of the x86 architecture that are salient to this research will be described in the following

subsections.

1.1.2.1 Instructions

x86 is a complex instruction set computing (CISC) architecture with a large set of instructions

that are encoded with a variable-width. Unfortunately it is hard to determine the exact number

of instructions, as this changes from model to model and lots are undocumented [11], however

according to one source, 1044 instructions were counted [7]. Since a lot of these instructions are

complex, per the CISC architecture, some can perform several mini-operations in one instruction,

reducing code size. On the other hand, this complicates analysis as not only are there 1000+

instructions that must be interpreted and modeled correctly, but a large portion of them are non-

trivial instructions to process. For example, the VINSERTF32x4 vector instruction is implemented

as such [8]:

(KL, VL) = (8, 256), (16, 512)

TEMP_DEST[VL-1:0] ← SRC1[VL-1:0]

IF VL = 256

CASE (imm8[0]) OF

0: TMP_DEST[127:0] ← SRC2[127:0]

1: TMP_DEST[255:128] ← SRC2[127:0]

ESAC.

FI;
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IF VL = 512

CASE (imm8[1:0]) OF

00: TMP_DEST[127:0]←SRC2[127:0]

01: TMP_DEST[255:128]←SRC2[127:0]

10: TMP_DEST[383:256]←SRC2[127:0]

11: TMP_DEST[511:384]←SRC2[127:0]

ESAC.

FI;

FOR j←0 TO KL-1

i←j * 32

IF k1[j] OR *no writemask*

THEN DEST[i+31:i]←TMP_DEST[i+31:i]

ELSE

IF *merging-masking*

THEN *DEST[i+31:i] remains unchanged*

ELSE ; zeroing-masking

DEST[i+31:i] ← 0

FI

FI;

ENDFOR

DEST[MAXVL-1:VL] ← 0

Due to this overwhelming complexity and large instruction set, binary analysis tools that target

the x86 architecture almost always leverage the use of an intermediate representation (IR) that

abstracts these details from the analysis software.

1.1.2.2 Registers

In x86 64, the main registers consist of 14 general purpose registers (RAX, RBX, RCX, RDX,

RDI, RSI, R8-R15), a stack pointer and base pointer (RSP, RBP) and an instruction pointer register

(RIP). Other architectures, such as PowerPC, contain significantly more general purpose registers

(r0-r32) [5]. The ”R” prefixed registers (R{AX,BX,CX,...}) stand for 64-bit wide registers, however

these registers can be accessed in lower bit modes such as 32, 16, and 8 bit mode by changing the
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name. To access the register in 32-bit mode, ”R” is changed to ”E” (EAX). 16-bit mode access

removes the prefix (AX) and 8-bit mode can be accessed via AH, which is the upper 8 bits of AX,

or AL for the lower 8 bits. Note that zeroing out RAX has the effect of setting EAX, AX, AH, and

AL to zero as well as these are simply accessing the same register, just at different bit-widths.

CPU architectures that have a higher register count can make things such as dataflow analysis

easier in functions that utilize a large amount of variables. Having lots of registers means that

the values can be stored in registers as opposed to pushing/popping values to the stack when the

registers get full. This concept presents a slight challenge in x86 due to the lower register count.

1.1.2.3 Calling Convention

In order to preserve application binary interface (ABI) compatibility amongst binary programs,

a standard for how parameters and return values are exchanged during function calls is necessary.

On x86, there are several different calling conventions available depending on the operating system

and processor mode (32-bit vs 64-bit). In this thesis we will focus on the Linux operating system

operating in 64-bit mode.

When a function is invoked in 64-bit Linux, which uses the System V AMD64 ABI, parameters

are passed via registers in the following order: RDI, RSI, RDX, RCX, R8, R9, XMM0-XMM7 [15].

When a function returns, the value passed back is available in the RAX register. This is important

because in order to trace the dataflow of function parameters, we must know which registers they

are being placed in.

Since this order must be consistent to allow interoperability with system libraries, it can be

useful for identifying potential functions as well as extracting their parameters. For the purpose

of dataflow analysis, we can determine the order of parameters based on which register they are

received in. For example, we know that a parameter in the RDI register is parameter 1, and a value

in RSI would be the second parameter and so on.

The following example demonstrates a call to printf() with 5 parameters:
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int main() {

printf("1: %c 2: %d 3: %lu 4: %s", 'a', 5, 10, "test");

}

The disassembly of the compiled C code above reads:

mov r8d, str.test // String: "test"

mov ecx, 0xa

mov edx, 5

mov esi, 0x61

mov edi, str.1:__c_2:__d_3:__lu_4:__s // String: "1: %c 2: %d 3: %lu 4: %s"

mov eax, 0

call sym.imp.printf

With regard to program flow, once a function is invoked via a call instruction, the address of

the next instruction is pushed to the stack and the target is jumped to. Upon the callee’s exit, this

return address is popped off the stack and jumped to. This information is important to perform

things like stack-unwinding in a debugger.
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1.1.3 Analyzing Binary Code

Substantial challenges exist when analyzing binary code, especially for complex architectures

such as x86. In this section, several common obstacles will be addressed.

1.1.3.1 Creation of a Binary Executable

When compiling source code into an executable binary, the steps are roughly outlined in Figure

1.1.

Source Code

Compiler Assembler Linker Binary Executable

External Object Files

Figure 1.1: Compilation Stages

In the compiler phase, the input source code is parsed and fed through many complex algo-

rithms to translate the code into primitive assembly instructions. The assembler then takes these

instructions and encodes them into opcodes which the processor can understand, and outputs this

in the form of an object file. Finally, the linker takes 1 or more object files and combines them

together, patching up the addresses to produce an executable binary output.

Between the compiler phase and assembler phase, lots of high level information that makes

the code human readable is lost. This is due to the fact that the processor does not need to be

aware of several details, such as type information, and therefore it is removed for performance and

size reasons. Unfortunately, this makes reverse engineering quite challenging because the concept

of variables, types, and even functions and loops can be completely removed from the generated

binary file. Since compiling is a ”lossy” operation, it can be very difficult, if not impossible, to

reconstruct the high-level source code from a given binary. Things like compiler optimizations and

intentional code obfuscation techniques exacerbate the problem further.
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To demonstrate the loss of type information, examine the following example of the compiling a

simple C struct through each step of the pipeline.

typedef struct ex {

char first;

unsigned int second;

} _ex;

struct ex foo(struct ex a) {

a.second = 44;

return a;

}

Compiling the C source into the LLVM IR still retains the name of the struct, but we have

already lost the explicit information that we are accessing the struct ex.second element and have

to deduce this from the offset instead of a name.

%struct.ex = type { i8, i32 }

define dso_local i64 @foo(i64) #0 {

%2 = alloca %struct.ex, align 4

%3 = alloca %struct.ex, align 4

%4 = bitcast %struct.ex* %3 to i64*

store i64 %0, i64* %4, align 4

%5 = getelementptr inbounds %struct.ex, %struct.ex* %3, i32 0, i32 1

store i32 44, i32* %5, align 4

%6 = bitcast %struct.ex* %2 to i8*

%7 = bitcast %struct.ex* %3 to i8*

call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %6, i8* align 4 %7, i64 8, i1 false)

%8 = bitcast %struct.ex* %2 to i64*

%9 = load i64, i64* %8, align 4

ret i64 %9

}
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After the IR is done being compiled, assembled, and linked, we get the following code:

0000000000000000 <foo>:

mov QWORD PTR [rsp-0x10],rdi

mov DWORD PTR [rsp-0xc],0x2c

mov rdi,QWORD PTR [rsp-0x10]

mov QWORD PTR [rsp-0x8],rdi

mov rax,QWORD PTR [rsp-0x8]

ret

At this stage, we have lost all variable names, types, and even the concept of a struct. Since

the processor operates on bits this makes sense, however from an analyst’s point of view it makes

things more difficult.

1.1.3.2 Control Flow Graph Recovery

One of the main challenges of binary analysis is the correct control flow graph (CFG) recovery of

a program. For many reasons outlined below, CFG recovery is not always accurate. Concepts like

dynamically-computed branch and jump targets present issues for CFGs [17]. For example, if there

is a program that has a function pointer and assigns it to the address of a function from a loaded

shared-object or DLL, it is difficult to statically determine the jump target. In the code shown in

Listing 1, there is call to an address in the RDX register, but it is not trivially apparent that this

is a call to the double cos(double x) function because the jump is to an address returned from

dlsym().

There are several other issues that complicate CFG recovery such as virtual function tables,

relocated functions in position-independent executables, jump tables, and exception handlers. Dis-

crepancies and errors in the CFG have compounding consequences for analysis tools. For example,

incorrectly identifying branch conditions and basic blocks presents the issue of incorporating (or

excluding) instructions into a program slice which can drastically change its dataflow.

Constructing an accurate CFG is an essential step for many binary analysis techniques.
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Listing 1 Dynamically-computed jump

#include <dlfcn.h>

int main() {

double (*cosine)(double);

void *handle = dlopen("libm.so.6",

*(void**)(&cosine) =

dlsym(handle, "cos");

(*cosine)(2.0);

dlclose(handle);

}

call 401050 <dlsym@plt>

mov QWORD PTR [rbx],rax

mov rdx,QWORD PTR [rsp]

mov rax,QWORD PTR [rip+0xe9e]

movq xmm0,rax

call rdx

1.1.3.3 Function Identification

In addition to control flow graph extraction, function identification with 100% accuracy is

another challenging task of binary analysis [6], [26], [3]. Incorrectly identifying function boundaries

might exclude (or include) extra bytes that are not taken into consideration which is problematic

for several reasons. In the instance of dataflow analysis, several instructions might be missing (or

added) which have an effect on the dataflow of that function.

For ELF binaries that have not been stripped, function identification can easily be achieved

by reading the symbol table inside the ELF file. This table resides in the .symtab and .strtab

sections of the ELF binary and contains the name of the function, the start address and the size.

Below you can observe that the main function is at 0x401126 and is 57 bytes.

Symbol table '.symtab' contains 85 entries:

Num: Value Size Type Bind Vis Ndx Name

...

80: 0000000000401040 47 FUNC GLOBAL DEFAULT 13 _start

81: 0000000000404024 0 NOTYPE GLOBAL DEFAULT 24 __bss_start

82: 0000000000401126 57 FUNC GLOBAL DEFAULT 13 main

83: 0000000000404028 0 OBJECT GLOBAL HIDDEN 23 __TMC_END__

84: 0000000000401000 0 FUNC GLOBAL HIDDEN 11 _init
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However with stripped ELF files, we lose explicit function information as shown below.

Symbol table '.dynsym' contains 4 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.2.5

2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Stripped binaries are common as the symbol tables in are not necessary for program execution

and exist to aid in debugging. Furthermore, stripping binaries reduces their size which is a common

use-case for removing this information - especially in resource constrained environments.

With the loss of these explicit boundaries, several attempts have been made to develop a

robust technique for identifying function boundaries. Challenges such as functions with multiple

entrypoints, shared code, and tail calls are all common obstacles that make the identification of

function boundaries difficult [12]. A common idea is to look fingerprint functions by searching for

the creation and destruction of a stack frame and label those addresses as a function’s boundaries.

While this might work for a significant number of functions, it is common for the compiler to omit

the stack frame for performance, or via −fomit-frame-pointer, and even use a region called the

”red zone” as a replacement for the stack when less space is needed [22]. Therefore, this sort of

technique will often result in poor accuracy.

1.1.3.4 Generating Disassembly

In order to perform analysis of binary code, it is necessary to decode the raw opcodes by

generating a disassembly of the file. To accomplish this, there are two main techniques, linear

disassembly and recursive disassembly. The first technique, linear disassembly, is a very simplistic

approach in which a disassembler starts in the .code section of a binary and iterates over the entire
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region, translating the bytes into assembly instructions [25]. The linear disassembly stops when

an illegal instruction is hit which causes problems when data is mixed with code, as well as other

issues.

Linear disassembly is straightforward on architectures that implement fixed-width instructions,

or instructions that have opcodes of the same length, such as PowerPC [14] and MIPS [5]. On x86,

however, instructions are variable-length encoded so binning a series of opcodes into 32-bit buckets

and decoding each as an instruction will not work. As a result, linear disassemblers must be careful

to properly determine the length of the opcode so that it can be decoded properly as failure to do so

will have a cascading effect on subsequent instructions being decoded properly. This is challenging

on x86 due to the CISC architecture where a large set of instructions exist, all of which need to be

decoded properly.

Data that exists in the code region can cause problems for linear disassemblers because they

interpret every byte they see as an opcode and do not make an attempt to differentiate data

from code. For example, given the following assembly code in listing 2, we can observe that the

linear disassembler Objdump [13], incorrectly identifies a word as an opcode at offset 9 in the

disassembly. Because a word was inserted that decoded to a valid opcode, Objdump assumed it

was an instruction.

Listing 2 Trick Assembly

.global main

.intel_syntax noprefix

main:

mov rax, 0

jmp over

.word 0x03eb

over:

mov rbx, 0

Given the large number of opcodes for the x86 architecture, there is a high probability that

a ”bad byte” will correspond to a valid opcode and be misinterpreted. This amplifies the prob-

lem as the disassembler loses track of the current alignment for what bytes it is interpreting as
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Listing 3 Objdump Output

0000000000000000 <main>:

0: 48 c7 c0 00 00 00 00 mov rax,0x0

7: eb 02 jmp b <over>

9: eb 03 jmp e <over+0x3>

000000000000000b <over>:

b: 48 c7 c3 00 00 00 00 mov rbx,0x0

opcodes in addition to outputting incorrect disassembly. A ”domino” effect is observed as sub-

sequent instructions are decoded improperly. In the example below, there is a jump over a data

byte (call L1 + 1) to the instruction pop rax in listing 4. The problem arises when Objdump

interprets the .byte 0xe9 line as an instruction and starts decoding it and the subsequent 4 bytes

as a valid opcode which is incorrect. As a consequence, Objdump has lost alignment and continues

to misidentify instructions such as the or DWORD PTR [rax-0x3d],edx in listing 5, which does not

exist. It is noteworthy that even though the disassembly reported by Objdump is incorrect, the

processor will still execute the valid assembly code. This is important because tricks outline above

can be used by malware and obsfucators to hide what is actually being executed as well as confuse

analysis tools.

Listing 4 Assembly Source

main:

call L1 + 1 // Jump to "pop rax"

L1:

.byte 0xe9 // Skipped

pop rax // Get program counter (RIP) into RAX

add rax, 9 // Add 9 which is location of "nop"

push rax

ret // "return" to computed address

.byte 0xe9 // Jumped over

nop // Target

The other popular disassembly technique is recursive dissassembly which is more robust, and

addresses some of the issues with linear disassembly outlined above. Instead of treating each
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Listing 5 Objdump output

0000000000000000 <main>:

0: e8 01 00 00 00 call 6 <L1+0x1>

0000000000000005 <L1>:

5: e9 58 48 83 c0 jmp ffffffffc0834862

a: 09 50 c3 or DWORD PTR [rax-0x3d],edx

d: e9 .byte 0xe9

e: 90 nop

sequential byte as a valid opcode, recursive disassemblers perform a basic control flow analysis,

interpreting which bytes are actually reached during execution. As the disassembler iterates, jumps

and branches are taken into consideration to discover new regions of code to disassemble. In the

example above, it is clear that the call L1 + 1 instruction jumps over the .byte 0xe9 data byte

and there are no other regions in the program that execute this byte.

IDA Pro [27] is a popular recursive disassembler and is the industry standard for disassembling

and reverse engineering binaries. Using the same example above, in Figure 1.2, IDA Pro is able

to properly disassemble the code due to its recursive approach, excluding the invalid data bytes

inserted in the code region.

Figure 1.2: IDA Pro Dissassembly
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1.1.4 Intermediate Representations

As mentioned in the x86 architecture section, the use of an IR greatly aids in binary analysis

of complex architectures due to the ability to simplify instructions to basic operations. In addition

to simplifying CISC architectures, using an IR provides architecture independence for the higher

level algorithms to operate on. As a result, porting tools to other architectures is quite easy as the

low-level details have been abstracted via the IR.

Many different flavors of IRs exist. Some of the popular ones are VEX, which is used by Valgrind

[34], PCode, which is used by Ghidra [2], and LLVM IR [18]. In this work, the VEX IR will be

used with the Python bindings, PyVEX [29]. This was chosen due to its simplicity, ease of use,

and correctness during testing when compared to other IR frameworks.

To demonstrate the value of an IR, we can look at the following example. The instruc-

tion VPABSW xmm1, xmm2/m128 in the x86 ISA ”computes the absolute value of 16-bit integers

in xmm2/m128 and stores the unsigned result in xmm1” [1]. The instruction logic is described as:

(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j←0 TO KL-1

i←j * 8

IF k1[j] OR *no writemask*

THEN

Unsigned DEST[i+7:i]←ABS(SRC[i+7:i])

ELSE

IF *merging-masking* ; merging-masking

THEN *DEST[i+7:i] remains unchanged*

ELSE *zeroing-masking*

; zeroing-masking

DEST[i+7:i] ← 0

FI

FI;

ENDFOR;

DEST[MAXVL-1:VL] ← 0
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When ”lifted” into the VEX IR, we are given the following representation:

IRSB {

t0:Ity_V128 t1:Ity_V128 t2:Ity_V128 t3:Ity_I64 t4:Ity_I64 t5:Ity_I64 t6:Ity_I64 t7:Ity_I64

t8:Ity_I64 t9:Ity_I64 t10:Ity_I64 t11:Ity_I64 t12:Ity_I64 t13:Ity_I64 t14:Ity_I64

t15:Ity_I64 t16:Ity_I64 t17:Ity_I64 t18:Ity_I64 t19:Ity_I64 t20:Ity_I64 t21:Ity_I64

t22:Ity_I64 t23:Ity_I64 t24:Ity_I64 t25:Ity_I64

↪→

↪→

↪→

00 | ------ IMark(0x40000, 5, 0) ------

01 | t1 = GET:V128(xmm2)

02 | t15 = V128HIto64(t1)

03 | t16 = V128to64(t1)

04 | t8 = SarN16x4(t16,0x0f)

05 | t17 = Not64(t8)

06 | t7 = Sub16x4(0x0000000000000000,t16)

07 | t19 = And64(t7,t8)

08 | t20 = And64(t16,t17)

09 | t18 = Or64(t20,t19)

10 | t13 = SarN16x4(t15,0x0f)

11 | t21 = Not64(t13)

12 | t12 = Sub16x4(0x0000000000000000,t15)

13 | t23 = And64(t12,t13)

14 | t24 = And64(t15,t21)

15 | t22 = Or64(t24,t23)

16 | t2 = 64HLtoV128(t22,t18)

17 | PUT(xmm1) = t2

18 | PUT(272) = 0

NEXT: PUT(rip) = 0x0000000000040005; Ijk_Boring

}

As one can observe, the VPABSW instruction is not terribly difficult to interpret and model by

itself, however modeling each instruction of x86 ISA is quite a task seeing as there are plenty of

instructions just as complex, if not worse. By using the VEX IR, we can simplify these instructions
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into primitive operations (such as AND, OR, NOT, ADD, MUL, etc...) that can be easily modeled

and interpreted by analysis algorithms.

1.2 Problem Statement

As demonstrated above, binary analysis is quite challenging due to the low-level nature of

binary executables and numerous obstacles regarding function and CFG recovery. While significant

research has gone into CFG and function recovery, dataflow extraction for x86 binaries seems to

have made less progress. Having the ability to trace the dataflow of a register throughout a section

of linear code provides value to an analyst and has applications to cybersecurity and software

verification as mentioned above. The objective of this research is to extract register dataflow

graphs from x86 binaries with a high degree of accuracy.

In order to maintain a reasonable scope, the research in this thesis assumes that functions,

disassembly and CFGs have been correctly recovered prior to generating the dataflow graphs as

these are substantially difficult problems on their own.
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CHAPTER 2. REVIEW OF LITERATURE AND TOOLS

2.1 Introduction

Several papers have been written on the topic of CFG and function recovery in x86 binaries,

but there appears to be a lack of work in the area of dataflow analysis. Due to the difficulty of the

subject at hand, this is somewhat to be expected. Listed below are tools and papers related to the

topic of binary dataflow analysis.

Several tools perform a variant of this thesis’s objective by doing things like dynamic taint

analysis, however the majority perform analysis dynamically which is likely due to the fact that

program flow cannot be determined entirely from static analysis alone due to complications such

as computed jumps. This research differentiates itself by remaining strictly in the static analysis

domain. The benefit of static analysis is the entire space of the program can be explored with

reasonable effort. Dynamic analysis has the substantial limitation of having to drive the target

program to its various states in order to analyse it which can be quite difficult due to the explosion

of paths in large programs and the challenge of deducing what input is required to unlock a new

state. Another advantage of static analysis is the fact that the target binary code does not have to

be run which is ideal for tasks such as analyzing malware.

2.2 Tools

2.2.1 Angr

One project, Angr [30], has done some work to construct data dependency graphs (DDGs) and

value flow graphs (VFGs) from binaries, as well as do program slicing. They have applied their

framework in several papers and projects such as a symbolic execution fuzzer [31] and DARPA’s

Cyber Grand Challenge. Unfortunately in my evaluation I found Angr to be quite unreliable and
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would crash often on trivial examples. Upon searching the internet for guidance, it became clear

that many other people experienced the same issues.

2.2.2 Miasm

Another popular tool is Miasm which is a reverse engineering framework that translates binary

code into an IR, performs symbolic execution and emulation, and has some brief applications to

dataflow analysis [21].

2.2.3 Dyninst

Popular in both academia and industry, Dyninst is a framework for binary analysis and in-

strumentation [23]. The project is comprised of several smaller projects, such as InstructionAPI,

SymTabAPI, PatchAPI, and ParseAPI, which combined allow them to decode binaries into a

higher-level abstraction in order to perform analysis and dynamic patching. There is also a sub-

project called DataflowAPI but appeared to be rather limited from a dataflow analysis standpoint.

The subproject provided APIs to analyze stack heights, do program slicing, and determine register

liveness, but did not have a means of generating register dataflow graphs.

2.2.4 Avast Retdec

As mentioned in the IR section, it is common for binary analysis tools to ”lift” binary code

into an IR. The LLVM IR [19] is quite popular due to the complexity it can support, along with

the analysis and transform ”passes” that have already been written for the IR. These passes allow

variable simplification, loop identification, memory dependence analysis, loop unrolling, and much

more [20]. The Clang compiler transforms code, such as C, into LLVM IR which is then fed to

LLVM which generates binary code. This means, in theory, if you are to ”lift” a binary into correct

LLVM IR, you can then re-create binary code by passing it through LLVM.

Avast has created a tool called Retdec which is a decompiler for several architectures, emitting

C and LLVM IR code from binary input files [4]. In addition to this, the Retdec toolset contains
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several utilities to extract information about binaries such as their CFG, ELF metadata, and

C++ class hierarchies. Unfortunately during testing, it was realized that Retdec had about a

70-80% accuracy when decompiling binaries into valid LLVM code that could be recompiled. For

complex binaries, it was found that even when the LLVM IR would compile back into a binary, the

generated binary did not run correctly or with the same functionality as the lifted binary. This

was disappointing as LLVM IR is a great platform to do code analysis on.

2.3 Papers

2.3.1 InputTracer

The paper presents a tool called InputTracer which uses dynamic taint analysis to analyze the

dataflow of a program with respect to its inputs [16]. The authors state that dataflow analysis

has typically been performed manually, underlining the need for a tool to automate this and make

the task more manageable. While the paper focuses on a similar goal of dataflow analysis in x86

binaries, their strategy differs in the way they approach the problem by performing a dynamic

analysis of binary code. This master’s thesis focuses on leveraging static analysis which has the

advantage of being able to model arbitrary regions of a binary as opposed to only the ones that are

touched by inputs during dynamic taint analysis.

2.3.2 Static Analysis of x86 Executables

This lengthy PhD dissertation goes into detail of binary analysis techniques for the x86 archi-

tecture. Specifically, it presents a new approach of augmenting CFG recovery by leveraging static

dataflow analysis concurrently to generate a more correct CFG with respect to computed jumps.

As part of this, Johannes created a tool Jakstab, that incorporates several dataflow subtopics such

as constant propagation, forward expression substitution, and live variable analysis.
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2.4 Summary

The current state of research and industry with regard to x86 dataflow analysis leaves much to

be desired, especially with regard to accuracy. While some tools come close to the objective of this

thesis’s research, none have been found to directly implement it.
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CHAPTER 3. METHODS AND PROCEDURES

3.1 Introduction

This section will describe the environment and steps taken to extract dataflow graphs from x86

binaries.

3.1.1 Tools & Software Used

3.1.1.1 Radare

Radare is an open-source, reverse engineering framework that supports a large variety of CPU

architectures [24]. The disassembly and CFG extraction engine is quite accurate, and the project

has APIs for multiple languages making it an attractive tool to use for this research.

Prior to selecting Radare for this research, the CFGs generated by the tool were carefully

evaluated to ensure that they were correct. To accomplish this, the XINU [33] operating system

was compiled for x86, ARM and MIPS and the CFGs were generated for many of the functions.

Then, using the program analysis platform Atlas [10], CFGs were generated for the C source code

and compared to the CFGs generated by Radare, checking for consistency. In all cases, except for

several jump tables on the MIPS XINU OS, the CFGs generated by Radare were correct.

3.1.1.2 Cutter

Cutter is an open-source GUI for the Radare project [32]. Since Radare is predominantly a

text-based interface, visualization of CFGs is difficult so Cutter was chosen to display the graphs

in a friendly format. Additionally, as part of this research a custom patch was made for Cutter

to allow the user to select basic-blocks of code within the CFG to generate a program slice for

dataflow analysis.
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3.1.1.3 PyVEX

PyVEX is an open-source Python library that exposes APIs to generate VEX IR [29]. As

mentioned earlier, the VEX IR is used for the program analysis of x86 code.

3.2 Process

In order to construct the dataflow graph for a section of binary code, the following steps are

taken with the details outlined below.

1. Create a program slice of the binary that is linear in control flow

2. Translate the program slice into the VEX intermediate representation

3. Transform the IR into a graph for each operation and SSA assignment

4. Select a target register to generate the dataflow graph for

5. Build dataflow graph and simplify

For the dataflow to be computed for a register, the control flow must be linear so that it can be

expressed as an equation without having to worry about the added complexity of loops. To achieve

this, the user must make a program slice of the binary using the Cutter GUI. A patch was created

for Cutter to allow the user to select blocks which are then passed to the analysis engine, piecing

the binary bytes together into a slice. In figure 3.1, the program has been sliced to follow the blocks

highlighted in blue. This generates a slice containing the following assembly instructions:

push rbp

mov rbp, rsp

mov dword [var_4h], edi

mov qword [var_10h], rsi

cmp dword [var_4h], 3
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mov eax, 0x4d

pop rbp

ret

Figure 3.1: Cutter UI - Selecting a program slice

The program slice is then translated into the VEX IR which is iterated over to construct a

graph for each of the SSA assignments. To demonstrate this, take the following linear control flow

program as an example.

int foo(int arg1) {

return arg1 + 0x16;

}
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Which disassembles to:

mov dword [rsp - 4], edi //Arg1 is in EDI per x86_64 Linux Calling Convention

mov eax, dword [rsp - 4]

add eax, 0x16

ret

After lifting the disassembly into the VEX IR and constructing a graph for each of the SSA

assignments, we have the following ”pool” of graphs as shown in Figure 3.2. Each node represents

an operation, constant, or variable, and edges represent assignment or a dependency. For example

the graph in the upper right would equate to the following operation: t21 = Sub64(t7, 0x80)

which is an assignment of the 64-bit subtraction of 0x80 from t7, to t21.

Figure 3.2: Graph ”pool”
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To construct a dataflow graph for a register, several graph algorithms are applied to recursively

chain together the dependency graphs. First, variables that are assigned to equal statements are

merged to reduce the size of the resulting graph. Next, a modified depth-first search is run over the

graph pool, starting at the register of interest (RAX in this example). When the DFS algorithm

encounters a leaf node, it checks if it is a variable and if so, searches the pool for a graph that defines

it, connecting the two if found. This continues until all the ”dependencies” have been satisfied and

the resulting graph contains only the nodes and edges that are related to the target register.

Finally, this graph is fed into a simplification pass that merges expressions such as t1 = t2 = t3

and removes the temporary variables completely where possible. This algorithm is summarized in

the pseudocode of Algorithm 1.

The graph in figure 3.3 depicts the dataflow for the RAX register in simplified format after the

steps outlined above have been executed. Transforming the graph into equation format, we get the

following:

t8 = Add64(RSP, 0xfffffffffffffffc)

*t8 = 64to32(RDI)

RAX = 32Uto64(Add32(64to32(32Uto64(*t8))), 0x16)

Which, when simplified, equates to RAX = U32to64(Add32(64to32(32Uto64(RDI))), 0x16).

This makes sense as, in x86, RAX is the return address register and RDI is the first parameter

register. Comparing this to the C code this was derived from, we can observe they are functionally

equivalent to adding 0x16 to the first parameter and returning the result.
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Figure 3.3: RAX Register Dependency Graph

Algorithm 1 Generate DFG for a register

Require:

G is a pool of graphs generated from the VEX IR

target register is a valid x86 register

1: function GenerateDFGraph(G, target register)

2: G = MergeRedundantTmpV ars(G)

3: connected nodes = DFS(G, target register, [])

4: for each N ∈ G do

5: if N 6∈ connected nodes then

6: RemoveNode(G, N)

7: end if

8: end for

9: G = MergeRedundantNodes(G)

10: return G

11: end function
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Algorithm 2 Support algorithms for GenerateDFGraph()

Require:

G is a pool of graphs generated from the VEX IR

V is a valid vertex in the graph G

1: function DFS(G, V , visited)

2: visited = visited + V

3: if IsLeafNode(V ) then

4: defining subgraph = FindSubgraphWithRoot(G,V )

5: AddEdge(G, V, defining subgraph)

6: DFS(G, defining subgraph, visited)

7: end if

8: for each N ∈ Sucessors(G,V ) do

9: if N 6∈ visited then

10: DFS(G, N, visited)

11: end if

12: end for

13: return visited

14: end function

1: function MergeRedundantTmpVars(G)

2: redundant graphs = Set{}
3: for each subgraph ∈ GetSubgraphs(G) do

4: labels = PreorderTraversal(subgraph)

5: for each subgraph 2 ∈ GetSubgraphs(G) do

6: labels 2 = PreorderTraversal(subgraph 2)

7: if labels == labels 2 && subgraph 2 6= subgraph then

8: redundant graphs = redundant graphs + [subgraph, subgraph 2]

9: end if

10: end for

11: end for

12:

13: for each redundant G ∈ redundant graphs do

14: ReplaceReferences(G, redundant G[0], redundant G[1])

15: end for

16: return G

17: end function
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CHAPTER 4. EVALUATION AND RESULTS

4.1 Introduction

In order to measure the success of the dataflow recovery method outlined in this thesis, it must

be evaluated for correctness. This chapter will outline the steps taken to evaluate RegSym and

present the results.

4.2 Evaluation

4.2.1 Z3 Theorem Prover

Z3 is a popular theorem prover by Microsoft that has bindings for several programming lan-

guages [9]. In order to assess the correctness of the register dataflow equations, we will use Z3

to check if the generated dataflow matches the source code by inputting both the equations and

checking them for equality. Since the test cases are not too large, Z3 should be able to check the

equality in a reasonable amount of time.

4.2.2 Testing Environment

The x86 dataflow generator code was run on a Ubuntu 19.04 virtual machine with Python

3.7.3 installed. To determine correctness, 20 test cases were created in C that performed arithmetic

operations on parameters and ranged from simple addition to more complex equations. An example

of one of the test cases is shown in listing 7. The dataflow recovery algorithm was configured to

extract the dataflow of the input parameters with respect to the RAX register which holds the

return value for the function.
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4.2.3 Steps

The following steps were taken to evaluate RegSym:

1. Compile test cases into binary executables

2. Run dataflow graph generation algorithm

3. Input generated dataflow equation to Z3

4. Compare with source code equation

4.3 Results

Shown below in Table 4.1 are the results for the test cases. The ”Correct” column indicates

whether the dataflow graph was deemed equivalent to the source code equation by Z3. The function

nomenclature roughly corresponds to the code in the test case. For example, and_xor(int a) is

the bitwise AND with a constant, and the result XORed with another constant.

4.4 Example Vulnerability

In order to demonstrate an applied usage of RegSym, the following vulnerability will be an-

alyzed. Below in Listing 6 is a gambling program that has a very poorly implemented random

number generator, proprietary_rng(). In an attempt to obfuscate the implementation, garbage

code has been added (all the non-highlighted lines) and the only code that is actually used is the last

line return (s/a). The generated assembly on the right is rather dense and it is not immediately

clear that the rng function only makes use of the first two parameters, returning the division opera-

tion as the random number. We will leverage RegSym to reverse engineer the proprietary_rng()

and crack it as well as exposing a DBZ (divide-by-zero) vulnerability.

Generating the register dataflow graph for the return register in the proprietary_rng() func-

tion provides us with the output in figure 4.1. From this, we can observe that the return value

(RAX) only depends on two of the input parameters (RDI & RSI) which correspond to the first
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Table 4.1: Function Dataflow Results

Function Correct? (Z3)

add const(int c) y

ab subtraction(int a, int b) y

shift add(int a) y

unused param add(int a, int b, int c) y

and xor(int a) y

div add(int a) y

mul xor(int a, int b, int c) y

shift mul add(int a) y

or shift(int a) y

triple add(int a, int b, int c) y

triple add shift(int a, int b, int c) y

triple add shift param(int a, int b, int c, int d) y

add mod(int a, int mod) y

or sub(int a, int sub) y

add ptr(int *a) y

mul by param(uint16 t a, uint8 t *multiplier) n

float noop ret float(float a) y

float mul double const(double a) n

float add double const(double a) n

float add double(double a, double b) n

two parameters. More importantly, we can observe that the proprietary_rng() function is only

a division operation. With this knowledge we can outsmart the gambling program and win ev-

ery time by providing dice rolls that match the rng output. In addition, since there is a division

operation with two user-controlled parameters, a divide by zero vulnerability can be triggered by

passing 0 as the second dice roll. Both of these actions are demonstrated in figure 4.2. While this

information could have been deduced by manually inspecting the assembly, RegSym was successful

in greatly simplifying the task and removing irrelevant assembly instructions. The usefulness of

this tool becomes more apparent with larger and more complex functions.
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Listing 6 Vulnerable Program

#include <stdio.h>

#include <stdlib.h>

int proprietary_rng(int s, int a, int b, int c) {

int d = a + b;

int l = s / (a^b);

l &= (d | l) + c;

int x = (l | d)^(b&a)*37 + s;

return (s/a);

}

int main(int argc, char **argv) {

int guess1 = atoi(argv[1]);

int guess2 = atoi(argv[2]);

int lotteryDice = proprietary_rng(guess1,

guess2, 4, 1042341);

if (guess2 == lotteryDice)

printf("You won the lottery!\n");

else

printf("Better luck next time!\n");

}

0000000000001145 <proprietary_rng>:

1145: push rbp

1146: mov rbp,rsp

1149: mov DWORD PTR [rbp-0x14],edi

114c: mov DWORD PTR [rbp-0x18],esi

114f: mov DWORD PTR [rbp-0x1c],edx

1152: mov DWORD PTR [rbp-0x20],ecx

1155: mov edx,DWORD PTR [rbp-0x18]

1158: mov eax,DWORD PTR [rbp-0x1c]

115b: add eax,edx

115d: mov DWORD PTR [rbp-0xc],eax

1160: mov eax,DWORD PTR [rbp-0x18]

1163: xor eax,DWORD PTR [rbp-0x1c]

1166: mov esi,eax

1168: mov eax,DWORD PTR [rbp-0x14]

116b: cdq

116c: idiv esi

116e: mov DWORD PTR [rbp-0x8],eax

1171: mov eax,DWORD PTR [rbp-0xc]

1174: or eax,DWORD PTR [rbp-0x8]

1177: mov edx,eax

1179: mov eax,DWORD PTR [rbp-0x20]

117c: add eax,edx

117e: and DWORD PTR [rbp-0x8],eax

1181: mov eax,DWORD PTR [rbp-0x8]

1184: or eax,DWORD PTR [rbp-0xc]

1187: mov ecx,eax

1189: mov eax,DWORD PTR [rbp-0x1c]

118c: and eax,DWORD PTR [rbp-0x18]

118f: mov edx,eax

1191: mov eax,edx

1193: shl eax,0x3

1196: add eax,edx

1198: shl eax,0x2

119b: add edx,eax

119d: mov eax,DWORD PTR [rbp-0x14]

11a0: add eax,edx

11a2: xor eax,ecx

11a4: mov DWORD PTR [rbp-0x4],eax

11a7: mov eax,DWORD PTR [rbp-0x14]

11aa: cdq

11ab: idiv DWORD PTR [rbp-0x18]

11ae: pop rbp

11af: ret

4.5 Conclusion

From the data above, it is apparent that the dataflow recovery algorithm has worked quite well,

succeeding on 16 out of the 20 test cases. Where RegSym was incorrect was in functions that use

floating point operations which was to be somewhat expected. Several of the dataflow equations

differed significantly in their composition from the source code equations, but were functionally

equivalent. This was interesting and can be described by compiler optimizations that were common

during division and modulus operations.
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Figure 4.1: Generated Register Flow

Figure 4.2: Reverse Engineered Gambling Program
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CHAPTER 5. SUMMARY AND DISCUSSION

5.1 Summary

In conclusion of this research, a new technique to extract dataflow from x86 binaries has been

presented and, through evaluation, has been demonstrated to be quite accurate. In addition to this,

an overview of binary software analysis has been presented, with several of the common challenges

described in detail.

5.2 Limitations

Two noteworthy limitations exist with RegSym. First, even though x86 is a CISC architecture,

compiling C code generates significantly more lines of assembly when compared to the original

source code. When analyzing a complex function or large chunk of code, many instructions are

involved which leads to very verbose dataflow graphs. Even with the simplification passes added

to RegSym, the generated graphs can be overwhelming to an analyst. As an example, the test case

used below, generates the dataflow graph seen in figure 5.1.

Listing 7 Test Case

int triple_add_shift_param(int a, int b, int c, int d) {

return (a + b + c) >> d;

}

In addition, while this is more of a compiler artifact outside of our control, strange things

occasionally happen due to compiler optimizations where the generated assembly is quite different

from the source code. For example, as mentioned above, during testing it was observed that division

operations were changed into multiplication with a strange constant, and the result was fed through
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various bitwise operations. This might be confusing to an analyst expecting a 1:1 mapping between

source and disassembly dataflow equations.

Finally, the last significant limitation is that the current tool only works on linear code and

requires loops to be unrolled. This simplifies the overall dataflow graph, but adds complexity when

selecting blocks to be analyzed.

5.3 Future Work

Several additions can be made to this research in future work. Improving the graph simplifica-

tion algorithms would help reduce the size, providing significant value when analyzing large regions

of code. To help with this, Z3 has a boolean logic simplification API that can be used to help

condense the logic expressions output by Regsym.

In addition to this, porting RegSym to another architecture could be accomplished with rea-

sonable difficulty due to the usage of the underlying VEX IR.

Finally, as mentioned in the limitations section, future work could be done to include control

flow statements into the dataflow giving a more traditional dataflow graph, however this will cause

a large expansion of the generated graphs and was omitted for this reason.
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Figure 5.1: triple add shift param test case graph
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